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ABSTRACT

This report proposes a design of an adaptive receiver for the detection and
estimation of nearly periodic signals in additive Gaussian noise. A nearly periodic
signal is defined to be a sample function of a Gaussian random process which can
be divided into equal length intervals, called periods, in such a manner that the
correlation between periods decreases exponentially with their separation. The
receiver computes a low signal-to-noise ratio conditional likelihood ratio from which
the observer must make decisions. The likelihood ratio is conditional because
the receiver estimates any u.'known parameters necessary for the computation
of the true likelihood ratio. Thus the receiver can only compute a likelihood ratio
conditioned upon these estimates being the true values of the unknown parameters.
The receiver consists cf pre-emphasis filters followed by a comb filter, energy
detector, and weighted summation. A theoretical evaluation of the receiver, in
terms of ROC curves, is made for the special case of nearly periodic signals with
satistically independent equal-strength harmonics in white noise of known power.
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THE ADAPTIVE DETECTION AND ESTIMATION OF NEARLY PERIODIC SIGNALS

T.G. Kincaid*

I. INTRODUCTION

This report proposes a system design of an adaptive receiver for the detection and estimation of nearly
periodic signals in additive Gaussian noise. A nearly periodic signal is very much like a periodic signal, but
fails to be periodic because its waveform is slowly changing with time. In this report, a nearly periodic signal
is more precisely defined as a sample function of a Gaussian random process which can be divided into equal-
length intervals, called periods, in such a manner that the correlation between periods decreases exponentially
with their separation.

The receiver design is based on the philosophy of minimization of average decision cost, which leadsto a
receiver that computes a likelihood ratio and compares it with a threshold. However, the proposed receiver
does not perforwm strictly in this manner for three reasons. First, since the parameters which determine the
threshold are not known, the proposed receiver leaves the threshold comparison to an observer. Second, some
parameters necessary for the design are estimated from the received data and inserted in place of the true
values, which are unknown to the designer. Thus the receiver is only capable of computing a likelihood ratio
conditioned upon the unknown ; arameters having their estimated values. Third, the proposed receiver is the
low signal-to-noise ratio approximation to the receiver dictated by the theoretical analysis. This approximation
results in comparatively simple receiver implementation without sacrificing threshold performance.

The operation of the proposed receiver can be satisfyingly interpreted in terms of the estimator-correlator
structure described by Kailath, (24) followed by an incoherent summing operation. However, the receiver is
more easily implemented if given an alternate interpretation, consisting of three distinct filtering operations
followed by energy detection and the incoherent summing. The first two filtering operations are pre-emphasis
filters which build up the high signal-to-noise ratio regions of the input. The third filter is a frequency domain
comb filter with tooth separation equal to the inverse of the period of the nearly periodic signal, and tooth
width determined by the intra period correlation of the nearly periodic signal. This comb filter is the heart of
the receiver, and can easily be implemented as a circulating adder, which coherently adds weighted sequential
periods of the pre-emphasized input. The comb filtering is followed by energy detection and an incoherent
summing operation.

A partial evaluation of the raceiver has been made by considering only the performance of the processor
without the incoherent summing. Confining the evaluation to this part of the processor makes theoretical
evaluation tractable. The evaluation is made for an input consisting of a nearly periodic signal with statistically
independent constant amplitude harmonics and additive white Gaussian noise of known power. The evaluation
is made in terms of Receiver Operating Characteristics (ROC), which display the probability of detection vs
the probability of false alarm.

II. ADAPTIVE RECEIVER DESIGN PHILOSOPHY
This section sets forth the philosophy used to design the adaptive receiver for nearly periodic signals.
The philosophy presented hcre is a summary of the literature in the area, and is general enough to be applied

to a variety of adaptive receiver design problems.,

A. Receiver Design

The basic function of any receiver is to make decisions about the values of one set of random variables
(messages) given the values of a different set of random variables (data). We usually distinguish two different
functions of receivers: detectors make decisions which are either right or wrong, and estimators make
decisions which are seldom exactly right, but can often be close. The same receiver may perform both
functions.

*General Electric Company, Heavy Military Electronic Systems, Syracuse, New York. Work carried out at
General Electric Company, Research and Development Center, Schenectady, New York, 12301.



How do you design such a receiver? As a starting point, we note that all we can know about the message
random variables is contained in their joint probability density; thus, it seems reasonable that the receiver
should first compute the joint probability density of the message variables conditioned upon the known values
of the data variables. This is called the posterior probability density of the message; i.e., the density after
the data are known. The receiver can then make decisions based on the computed posterior density, according
to any criterion of goodness based on average performance. Our guiding principle will therefore be that the
receiver is to be designed in two parts: (1) a posterior probability computer, and (2) an estimation or detec-
tion decision maker.

B. Adaptive Receivers

There seems to be no rigorous definition of what constitutes an adaptive system. Scudder's concept(z) of
an adaptive system as one "--whose behavior changes with time, depending upon the input, " is certainly broad
enough to contain the thinking of most authors on the subject. However, this definition is too general to allow
the design of a canonic adaptive receiving system, so the design is still an art.

A number of authors have shown how the use of the Bayes rule (Section II-C below) to compute posterior
probabilities can lead to 'S\.n adaptive processing system. This is accomplished either directly using a sequential
form of Bayes' rule, (3-8) or indirectly by app(%priate interpretation of the formulas describing the receiver
resulting from the application of Bayes' rule. 9 However, the practical application of the Bayes rule approach
has proved difficult. One pr?blem is that the resulting receiver may grow exponentially in complexijty as more
and more data are received. 8) A more fundamental difficulty is the so-called "a priori" problem. (10-13) The
a priori problem arises because it is necessary for the computation of posterior probabilities by Bayes' rule
that the prior probabilities be known for both the message random variables and any unknown parameters
required to design the receiver.

Some designers have avoided both the complexity and a priori probleme; by designing systems according to
some criterion other than the computation of pos(terior probabilities. (14-18) For those who insist on the rigorous
computation of posterior probabilities, Spragins 17) has demonstrated that the complexity problem can be ove<r-
come only by the use of sufficieni statistics and reproducing densities, an area also investigated by Birdsall. 18)
It appears that for man¥ applications sufficient statistics can be found, although it may be necessary to make
some approximations.( 9) The more difficult a priori problem has not yet been satisfactorily resolved. The
currently favored approach is to use the princi{)le of Snaxlmum entropy, with any prior knowledge as con-
straints, to derive prior probability densities. 12,19) 1 enough input data is available to the processor, it

can be shown thatunder rather general conditions the choice of prior probability density is irrelevant, provided
it does not exclude the true value of the parameter sought.

Another approach (Section II-D below) to overcoming the complexity and a priori problems inherent in the
use of Bayes' rule is to estimate the unknown parameters from received data, and then to insert the estimates
in place of the actual values.(20,21) This results in an inherently adaptive receiver, but one which does not
actually compute the posterior probabilities. However, the use of estimates for the unknown parameters
makes the receiver asymptotically equivalent to the desired posterior probability computing receiver if the
estimates approach the true values. Even so, this limiting condition is never reached in practice, and often
cannot even be approached arbitrarily closely because the true values of the parameters are changing. What
this type of "suboptimal” receiver actually computes is the posterior probabilities of the desired variables,
conditioned upon the unknown parameters having their estimated values.

In summary, an adaptive receiver can arise from at least two considerations, hoth of which may be used
in the same receiver. The first is the use of the sequential form of Bayes' rule to compute posterior proba-
bilities. The second is the use of current estimates of parameters 1n place of true values.

C. Computation of Posterior Probabilities

Suppose a recelver is given a data signal Z which contains information about a message random variable,
Q, whose value we wish to determine. (Two random variables contain information about each other if they are
dependent.) Then, according to our philosophy, the receiver first computes f(Q/Z), the probability density
function of Q given Z. The computation of £(Q/Z) can be carried out using Bayes' rule, viz.

f(Q/2Z) = ¢(Z/QA(Q)V/1(2Z) . (m-1)
The term {(Q) is the prior probability density function of the message Q, i.e., the probability density
function of Q before Z is received. As discussed above, the precise specification of this function is still a

matter of philosophical discussion, and it figures prominently in the subsequent decisions. It is sufficient for
now to note that the prior density does not depend upon the input Z.

-2-



The term £(Z/Q) does depend upon Z. Although ¢(Z/Q) is a probability density function for the random
variable Z, we are interested in £(Z/Q) as a function of Q, since we ultimately wish to compute the probability
density function f(Q/Z) on the left of Eq.(II-1). As a function of Q, ¢(Z/Q) is not a probability density function,
and it is commonly called the likelihood function. Note that since the likelihood function contains the input signal
Z as a parameter, its functional form is dependent upon the input.

The term {(Z), the prior probability density function of Z, is also dependent upon Z. However, it is not
independent of the form of the likelihood function because of the constraint

Joa@a - [ aquz/an@rm - 1. @-2)
Thus we can view f(Z) as a normalizing constant, and write

f(QZ) = a ¢(2 QHQ) . (I1-3)
where

a™! = fdQ L(Z1 QAQ . (II- 4)

Since f(Q) is specified a priori, and since the normalizing constant a depends upon the likelihood function
through Eq. (II-4), an important function of the receiver is the computation of the likelihood function ¢(Z! Q).

We wish now to consider what happens when the receiver receives two successive inputs, Z; and Z,, which
contain information about the message Q. After the first input, the receiver computes

fQIZy) = apt (Z,|Qf(Q) . (I-5)
After receiving the second input, the receiver computes

1(Q 21, 2Zy) = 2,0(2Z4,2,)] Qi(Q), (I1- 6)
in order to take advantage of all the information in both Z; and Z,.

In general, for a set of k inputs {Z;}) containing information about a message Q, the receiver computes

1(Q1{2Zi)K) = akt({Zj}k| ALQ), (I1-17)
with ap computed as in Eq. (II-4). In Eq.(II-5), the likelihood function depends only on the input Z;, and we
have a "one-shot" receiver. In Eq.(II-7), the likelihood function depends upon the whole input sequence {Zj},

and therefore describes a "multishot", or sequential, receiver. As with the "one-shot" receiver, an important
function of the sequential receiver is the computation of the likelihood function ¢ ({24} | Q).

As has already been noted, the likelihood function is a function of Q and not the {Z;}y in the context of
Eq.(I-7). Rather, the {Zj}) are parameters of the likelihood function that determine llts functional form.
Thus the likelihood function will change in a manner determined by the receiver inputs. It is this view of the
sequentia.l( (3omputation of posterior probabilities which leads some authors to call this type of receiveg
adaptive. 9

D. Treatment of Unknown Parameters

It almost always happens that the likelihood function contains parameters which are unknown, but which are
critical to the evaluation of the likelinood function. These parameters may be associated with the message
bearing signal (e.g., amplitude, phase), the noise (e.g., noise variance), or some other aspect of the problem.
We shall describe two methods of dealing with this problem: the marginal density method, and the estimation
method.

1. The Marginal Density Method

The most widely proposed(mv 22) method of handling unknown parameters is to compute the joint density of
the message and the unknown parameters, and then to integrate over the unknown parameter random variables
to obtain the (marginal) density of the message.

The computation is as follows. For a message Q and an unknown parameter A, the posterior density of

Q is



1QI(Zy)y) = j dAL(Q,A| [ Zgly)
- f dAay ¢ ({ Z} | Q AN(Q,A)

= 3yl f dAL (T Zy 11| Q ANA| QIHQ) . (11-8)
Thus the likelihood function is
L(Z)k] Q = f dAL([Zi)k) QANA|Q) . (11-9)

It often happens that Q and A are independent, in which case only the unconditional prior density of A is needed
for the likelihood function.

The problem with this approach is that the likelthod function cannot be computed without the prior proba-
bility density of the unknown parameter. Since this density is usually not known, it must either be assumed or
plausibly derived by some technique such as maximum entropy.

2. The Estimation Method

When the prior probability density of an unknown parameter is not known, a "suboptimal" receiver must
be used. One possibility is to design the receiver as though the parameters were known, and then substitute
estimates of the parameters for their true values.

To understand the meaning of the estimation method, consider the computation of the joint density of the
message and the unknown parameter; however, instead of computing the complete joint density of the message
Q and the unknown parameter A, we compute the probability density of Q only for A equal to its estimated
value A. Thus we compute

£(QA=A|[Z})) = a2({Zi)k] QA-AN(QAA). (II-10)

After normalization, the function on the left of Eq. (II- 10) becomes the density of Q given { Zi}g and A=A,
Thus, the estimation method can be thought of as the computation of

£1(QI {24}y, A) = af et 2} QAN(QA) (I-11)

where x
[4QHQ,A=A)

K [aQHQ A=A (Z4)y)

The constant a.l'( is required to normalize the two probability density functions. Equation (II-11) shows that the
resulting receiver computes the posterior density of the message, given that the parameter has its estimated
value. Thi®«density converges to the desired posterior density of the message as the parameter estimate
converges to its true value. For some kinds of estimates (Section II-E-2 below) it is not necessary to know
the prior density of the unknown parameter. Wien these estimates are used, the a priori problem does not

arise.

t

ak=

(11-12)

If the unknown parameter estimates are continually updated as new data are received, then the receiver
will be constantly changing. Furthermore, the receiver may have the ability to change its form in response
to a slowly changing parameter, e.g., noise variance. Thus a receiver which handles unknown paraimneters by
the estimation method can be called adaptive.

E. Decision Makin
1. Detection

We shall concern ourselves only with the problem of deciding between two possible values of a message
variable, given the received data; thus, a message Q can take on only two values, Q, or Q. These might
represent "target present" and "target absent, " respectively. This restriction on Q gives the posterior

density for Q a particular form.

-4-



1(QZ) = a1 (Z|QLus(QQy) + (1-p) 8(Q-Q)?
(1-13)
= au 1(2] Q) 8(Q-Q)) + a(1-p) +(Z) Q) 5(Q-Q)

where y and 1- are the prior probabilities of Q,; and Q,, respectively. Note that the posterior probabilities
of Q and Q are au +(2|Q) and a(1l-,) +(Z| Q), respectively.

Suppose we are interested in determining if Q = Q;. Then the possible outcomes of the decision process
are

1. detection decide Q = Q; when Q= Q

2. miss - decide Q = Q; when Q = Q (I1-14)
3. false alarm - decide Q = Q; when Q = Q,
4. (no name) - decide Q=Q; when Q=Q, .

Of these four possibilities, two are correct decisions, and two are errors. The problem is to muke tne
decisions in some best way.

We shall select as our ideal decision criterion the minimization of the expected cost of our decisions.
We can denote the costs of the four outcomes as Cjj» where i refers to the decision and j to the actual value
of Q. Thus cy is the cost of deciding Q; when ac{ually Q = Q. Then the cost, c, of any particular trial of
the experiment is a random variable, wh'ch can take on any of the values Cjj

We assume that the cost of a wrong decision is higher than the cost of a correct decision, i.e.,
Cig > Coo (I1-15)
Cgy1 > Cy1 (II-IB)

The receiver which minimizes the average cost (c) performs the Bayes test, (33, 34) viz.

1 (Z1 Q) Cpp - C o
compare U—%ﬁ%ﬁ%‘b—o? with —19——”»%1 o (I1-17)

and decides Q; if the ratio exceeds the threshold, Q, if not. The Bayes test needs posterior probabilities,
and makes their role in the decision process explicit. It is more common to write the Bayes test in the form

compare )\ (Z) = i’(gl Q)) with (:-Co)t(f c—: iy (II-18)

The quantity \(Z) is called the likelihood ratio. The likelihood ratio depends only upon the likelihood function
+(Z]Q), and is independent of the prior probabilities of Q. One major difficulty viith the Bayes test is deter-
mining the threshold setting on the right of relation (II-18). Not only is there the a priori problem, but there
is the additional problem of assigning costs. It seems the best that can be done is to present the observer

with the likelihood ratio, and let him make decisions. In effect, the observer inserts the prior probabilities
and costs from his experience and knowledge of the tac..cal situation. From this combination he sets a mental
threshold and makes his decision.

A second problem with the Bayes test is that the likelihood ratio cannot be computed exactly if the prior
probabilities of the unknown parametcrs are not available. Ovu philosophy then is to use the conditional
posterior probabilities determined by the estimation method described in Section II-D-2;that is, estimates of the
parameters are used as though they were the true values. This results in a conditional likelihood ratio
{author's definition). For an unknown parameter with estimate A, the conditional likelihood ratio is

\(z|A) = LZ1QuA) (11-19)
(2| Q,A)



The methods by which the estimates can be made are desc. tbed in the next section. When A is 2 maximum
likelihood estim%eq)(Section II-E-2 below) the conditional likelihood ratio is equivalent to the generalized

likelihood ratio.

Since it may not be possible to evaluate the receiver by costs, we need another method of evaluating the
receiver. A commonly used method that is independent of the message prior probabilities is the receiver
operating characteristic (ROC). This is the plot of the probability of a detection (pg) vs the probability of a
false alarm (pg) when tt&f receiver compares the likelihood ratio with a threshold level ~. It has been shown
by Neyman and Pearson 4)tha.t a receiver which makes detections by comparing the actual likelihood ratio with
a threshold will maximize the probability of detections for a fixed probability of false alarms. This theorem
ensures that the ROC curves will rate the receiver which computes the true likelihood ratio superior to the
one which computes a conditional likelihood ratio.

The ROC curves are determined as follows. The (conditional) likelihood ratio, 1, is a random variable.
The probability of detection is given by

Py = L d £0./Qq) (I1-20)

and the probability of a false alarm is given by

p; - Jf d £01Qp) . (I-21)

n

Then, the ROC curves are computed by choosing values of -, computing pq and pg, and plotting one vs the
other.

2. Estimation

There are two principal reasons why we may need to make an estimate of the value of a random variable.
It may be that the random variable is an unknown parameter and we wish to have the estimate for use in the
estimation method of receiver design described in Section II-D-2. The second reason is that the random
variable may be a message, and having an estimate of its value is important for reasons other than receiver
design, e.g., target classification.

Whatever the reason, there are a number of different ways of making estimates, each having particular
advantages in certain situations.

Unconditional estimates are based on both the received data and the prior density of the unknown param-
eter. Two widely used unconditional estimates are:

The Minimum Mean-Square Error (mms) Estimate. The mms estimate nf a random variable, A, given
the value of 1 random variable, Z, is the value A of A which minimizes

el = fdA A-ARfAlZ) . (11-22)
It is straiginforward(u) to show that the minimum is given by the conditional mean of A.
A= fdA AfA|Z) . (11-23)

The Maximum Posterior Probability (mpp) Estimate. The mpp estimate of a random variable, A, given
the value of a random variable Z, is the value A of A for which the posterior density of A is a maximum; in
other words, A is the most probable value of A when Z is known,

A = A for which f(A}Z) is maximum. (I1-24)
This estimate is also called the maximum a posteriori (map) estimate.

Conditional estimates depend only on the received data. Because of this, conditional estimates can be
used in the estimation method of handling unknown parameters (Section II-D-2). Two popular conditional
estimates are:

The Maximum Likelihood (m:) Estimate. The m: estimate of a random variable, A, given the value of a
random variable, Z, is the value A of A for which the likelihood function for A is a maximum.

- 6-



A = A for which ¢(Z|A) i8 maximum. (I1-25)
In other words, A is the value of A that most likely caused the given valuc of Z to occur,

The Likelihood Ratio (¢r) Estimate. The t¢r estimate of a random variable, A, given a random variable,
Z, is the value of A of A for which the likelihood ratio of a message Q i{s a maximum,

A = A for which A(Z|A) i8 a maximum, (IT-286)

This estimate is the most widely used for the estimation of unknown target parameters in detection problems;
e.g., range in sonar. When used for this purpose, it is equivalent to the m¢ estimate, given the target is
present. The estimate is made by forming the likelihood ratio for all possible values of the unknown param-
eter, and choosing the 1x., .t ratio. This is, in effect, constructing a separate likelihood ratio detector for
each value of the unknown parameter, and choosing the value of the parameter corresponding to the detector
with the largest output.

II. ADAPTIVE DETECTION AND ESTIMATION OF NEARLY PERIODIC SIGNALS

The objective of this section is to design an adaptive receiver for the detection and estimation of a nearly
periodic signal in additive, zero mean, Gaussian noise. The detection problem will be given primary con-
sideration, the estimation coming as a by-product.

In this work it will be assumed that the nearly periodic signal is a sample function of a nonstationary
Gaussian random process, of the type described in the Introduction. A more detailed description of the prop-
erties of the nearly periodic signal are given in Sections III-A, B below.

A. Known Parameters

We shall first solve the detection problem when all parameters are known except whether the signal is
present or absent. Thein, after the appropriate receiver is derived, the extension to "inknown parameters will
be made by the methods described in Section II-D,

We shall represent signals by column matrices whose entries are the time samples of the signals. We
assume that the receiver input signal is either the noise only, or a sum of the noise and a nearly periodic signal
with the properties described above. We further assume that only s successive time samples of the input are
available. Then the matrix equation for the input signal is

Z = =X+N, (- 1)

where Z is the input signal maltrix;

2 is a random variable which is either 1 or 0, depending upon whether the nearly periodic
signal is respectively present or absent;

X is the nearly periodic signal matrix, assumed known here; and
N is the zerv mean Gaussian noise signal matrix.

For detection, the receiver computes the likelihood ratio

2) (Im-2)

In the context of this problem, - is the message Q in Eq.(II-1). Under our assumptions, the likelihood function
in Eq. (III-2) can be written as

H(Z) ) = (282 |1yl TV/2 expt- -% (Z--X) 2= X)L (m-3)

In this equation, 'N is the s x s noise covariance matrix, and * denotes matrix transposition,

We assume that when the input signal is sampled near the Nyquist rate for the nearly periodic signal, then
there are exactly p time samples of the nearly periodic signal in each period. We further assume that the
noise is significantly correlated only over a number of adjacent time samples which are small compared to p.



This tmplies that the noise spectrum does not vary too rapidly over the frequency band occupied by the nearly
periodic signal.

Then we define Z; to be a 1 ¢ p column matrix whose entries are the p entries of Z from (-1)p+ 1 to
ip inclusive, corresponding tu one period of the periodic waveform, and X| similarly. We will assume
stationary noise and define %y, to be the p x p matrix whose rows are the p entries of sy contained in rows
(i-1)p + 1 to ip inclusive, ang the columns of the same index, for any i,

Under the above assumption about the noise correlation, and using the notation described above, the like-
lihood function of Eq. (ITI-3) can be written approximately as

k
t(Z]a) - (27)kp /2 l4Np! ™% exp I .5. yéT (Z- Xp)° Np (% X)) (11-4)

where k i8 the number of times p divides s. In general, p will not divide 8 evenly, and so Eq. (Il1-4) ignores
a portion of the input signal in computing the likelihood function, However, for ks> 1 (i.e., many periods),
this excess signal will make a negligible contribution to the likelihood function, and so can be neglected for the
sake of simplicity.

Equation (ITI-4) {8 an example of how the computation of the likelihood function for a specific problem can
resul’ in an adaptive interpretation for the processor. The equation shows that the likelithood function changes
each time a new set of p samples is added to the input signal, giving a sequential type adaptive recefver as
discussed in Section II-B.

B. Unknown Parameters

In general, 'Np (X}, and p are unknown. In this case, the receiver can be designed using the methods
described in Sectiol? II-D for handling unknown parameters. The methods may be intermixed. [If possible, it
is desirable to vse the marginal density method, since it gives unconditional posterior probabilities.

For the set of unknown waveforms X!, we shall use the marginal density method. We shall assume that
the p samples in any period of the nearly periodic waveform are zero mean Gaussian random variables with
covariance matrix $x,, which is the same for each period. We further assume tha’t the samiples in the ith
and jth periods, which are |i-j! periods apart, have a cross covariance matrix _ ') ‘xp+ Where Os: 1.
From these definitions we sec that the narginal density method is still going to leave the p:Pramcters Yxp 4nd
o to be specified. We shall assume that these parameters arc either known or will be estimated. In lhcqaller
case we 8till proceed as through these parameters were known, and substitute the estimated values for the true
values at the end.

The parameters p and ! p will be estimated. Since p s a parameter of a synal which may not be pres-
ent, it will be estimated usn\g the likelihood ratio estimate (Section M1-E-2), 1.¢., by building parallel
receivers, one for each value of p. The noise is always present, and its covariance can be estimated contin-
uously by maximum likelihood or some other technique. We therefore proceed as though p and 'Np were
known.

Now the likelthood function for is

-,

AVARY | dX A (Z0 - X)X )

v (I11-5)
X 20X ) 1 X )

assuniing the (X)) are independent of . The integral on the set Xy is to be interpreted as the kp-fold
integral on the entries of X. In Eq.(II-5), the first term of th» integrand is given by Eq. (IT1I-4). The second
term is the prior densily of the set of waveforms "X; 1y, i.e., he prior density of X.

An expression for the prior density of the (X;1) can be derived as follows. From the above definitions,
the covariance matrix for the 8 - kp samples from the periods of the nearly periodic waveform X is the s.8
matrix 3y, which can be written as the Kronecker product(26,27)
'x P 'Xp (I11-6)
where
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This inverse of P can be verified by direct multiplication. Thus we can write
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Now the likelihood function can be evaluated by substituting Eqgs. (III- 4) and ([TI-10) into Eq. (IIT-5) and
mtegrating. The integral is conveniently evaluated separately for the two values of -. Carrying out the
integration, the likelihood function --0 is

k
121200 = @) P2y 1R exp [ 3) 2 e;,'pz‘}. (m-11)
)

and the likelihood function for - -1 18 shown in Appendix A to be

k
) .-kp/2 'S SN B I
1(Z15:1) = (2) I!Npl (‘XPl' 3 2‘ Zi Np zlJ
!
. (Irm-12)
K epken Ko a1
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where Aj and ¢ are given by Eqs.(A4) and (A6) in Appendix A.



Using these results, the likelihood ratio 18

\(Z) = f—%’r:—:a-

K . (IM1-13)
- ogpl ¥/ 1oty PR l?‘ 1Ay /2 exp:’i): °1j-
s (=1
A more convenient parameter 8 the logarithm of the likelihood ratio.
\(Z) = In [u )R R0/ Ry ) )k' c (- 14)
Xl = Gl b b

Since the parameters p,¥Np,~, and $x, are to be estimated if they are not known, the above equations are
really for a conditional lik ?lhood ratlo as discussed in Section II-E-1,

IV. PRACTK AL RECEIVER DESIGN AND EVALUATION

A. Practical Receiver Design

1. General Structure

In the previous section, it was shown "hat the receiver for the detection of a nearly periodic signal computes
the logarithm of the likelihood ratio given in Eq. (ill-14). The expressions for the coefficients A, and ¢ given
byEqs. (A4and A 6)are complicated and do not lend themselves to a simple receiver design.

A simple receiver design results if the receiver computes the logarithm of the likelihood ratio only for low
signal-to-noise ratios. This is also a practical constraint, since it i8s not necessary for the receiver to be
sensitive at high signal-to-noise ratios where detection is much easier. We define low signal-to-noise ratio
as the g({s\dltlon where the eigenvalues of the signal-to-noise ratio matrix, m are much less than
unlty Under this condition, it is shown in Appendix B that the coefflclen?‘sp A Bnd ¢, are approximated by
Eqs.(B2) and (B3), respectively Substituting these equations into Eq. (ITI- 14), the logarithm of the likelithood
ratio becomes

< =1n [(1-¢ 2)'P/21

!

. i -
o [(1- ’)) IR LA z\ (v-1)
i=1 =1 y

[} i \‘ -
-1 - k-) - \ !
*Np Zj | ¥xp > o " ANp Zj/ e
j:' ‘
In Eq.(IV-1), the first term is an additive constant, unaffected by the input to the receiver. The last two

terms are the ones which need to be computed by the receiver. We shall denote these terms, without the 12
multiplier, by

k-j

k-1
q= (o) g v gy (v-2)
i1
where
£ i A ’
q =(j(,-.l 5 5Np Zj ) Xp <j ’Np Zj> ci=1to k. (rv-3)
= =1

The heart of this low sign:l-to-noise ratio receiver is the computation of the q;. By interpreting the square
matrices #xp and 5{.{,, as linear filters(24, 35) (which may be time variable and/or unrealizable), this
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computation can be given at least two interpretations: the estimator correlator interprewation, and the filter-
energy detector interpretation. The eatlmutor-c?rrelalor interpretation shows the connection between the
results obtained here and the work of Kailath, (24) ang a.ll? sulows an adaptive explanation of the receiver
operation which is a particuliar case of the work of Nolte, 9) and closely parallels the work of Jakowatz, Siuey,
and White, (14)  The filter-energy detector Interpretation docs not provide the same {nsights into the receiver
operation but {8 simpler both in concept and implementation than the estimator-correlator interpretation.

The estimator-correlator interpretation comes about from the following manipulation of Eq. (Iv-3). 8ince
the mauib)oN'p is positive definite, it can be split into the product of a triangular matrix and its transpose, as
follows:

-1 . L ‘
'Np = WpWp (v-4)

then Eq.(IV-3) can be written

(Iv-5)

- . . l -

i
1 ‘ -1

Kailath(24) has shown that the filter W, 's a prewhitening filter, and in Eq.(rV-_S) W, prewhitens the noise
component of each period Z, of the ré)celved signal. The filter cascade %y INp lgthe low signal-to-noise
ratio approximation to tue w‘lener filter which estimates the signal X; from Zj “see Kailath(24 V. In Eq.(IV-5)
these individual estimates are weighted by the c" and added to form’ an over-all estimate,

i
-\T L = ‘
X, =\ . *Xp *Np Zj Iv-6)

of the cu.rent period X; of the nearly periodic signal. This over-all estimate is distorted by the filter W

to compensate for the distortion of Z; by W_, and then correlated with each of the i prewhitened input periods
WyZ, . The matrix product inside sq{lare blgckets in Eq.(IV-5)is this correlation. The scalars that result
from the i correlations are then weighted by the =1 and summed to give the q;. This interpretation of the
receiver can be given an adaptive character by viewing it as a correlation receiver in which the reference
waveform X;, given by Eq. (IV-6), is not fixed but instead estimated from the received data. Thus the rﬂ-
erence waveform adapts itself somewhat in t(h? manner of the filter built by Jakowatz, Shuey, and White, 4)
but followiny; the theory described by Nolte. 9) 1t is of interest to note that when -=0 Eq.(IV-5) reduces to

q = (WpZ)) (Wp sxp3npZy) (rv-m
which is the low signal-to-noise ratio approximation to Kailath's{24) zero mean signal receiver.

The filter-energy detector interpretation comes about as follows. Since the matrix *Xp is positive
definite, it can be split into the product of a triangular matrix and its transpose.

txp = GG - (Iv-8)

Then Eq.(IV-3) can be written as the vector squared magnitud.

i
g = Il j[ Gtz (Tv-9)
=1

Equation (IV-8) shows that the q; are the result of passing the Z; through the filters G and ., weightiqg
the filtered outputs by OH, adding t*\em together, and computing the energy of the sum. The total qllter GQ'N
can be interpreted in terms of prewhitening and low signal-to-noise ratio Wiener filtering, but a straightforwaxpd
interpretation in terms of pre-emphasis filtering suffices here. The filter ,é{P has the effect of emphasizing

e

the regions of the spectrum where the noise power is low, and it emphasizes these regions more strongly than
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a prewhitening filter. The [ilter G Is the filter whose spectrum is the square root of the spectrum of #y .
This filter emphasizes the portion of the spectrum where the desired signal is expected to be, and de-emphasizes
the other regions,

The summation which follows these two filters is the means by which the receiver takes advantage of the
nearly periodic structure of the desired signal. The filtered waveform sections are weighted and added on top
of each other, and when there is a nearly periodic waveform present, this sum will be larger than when there
is not. This coherent summing opetation is sometimes referred to as a circulating addition, because it can be
implemented by a delay line with feedback, i.e., a recirculating line.

This circplating adder is completely equivalent to a frequency domain comb filter acting on the output of
the G and ¢y, pre-emphasis filters. This equivalence is shown in Appendix C, with the frequency response
Y(f) of the filler given by Eq.(C2). Taking the sampling interval as the fundamental time unit, the comb filter
"tnoth® separation is shown to be 1/p, and the tooth width between the 1/2 power points is (1/7p)In (1/5), as
shown in Fig. 1.

(Y7p)

| 1Y ai
vin (Y) tn (Yp)+i 2 (1-hsp)
L | (L)
SPMi':IHG Tp p
% BETWEEN 1/2
POWER POINTS
: : === : --- - FREQUENCY
0 [ 2
| o ] h’n

Fig.1 The frequency response of the comb filter interpretation of the weighted circulating adder.

With this interpretation of the circulating adder as a linear time invariant filter, the partion of the receiver
which computes q, becomes rather simple. It is a cascade of the #y1, G, and comb filters, followed by an
energy detector.q‘rhe energy detector computes the energy of the nﬁ'é’r output in each successive period, and
these energies are the q;. The remainder of the operation of the receiver is dictated by Eq.(TV-2). This
equation shows that the quantity q, which determines A, is a weighted sum of the q;. All the q; but the last
are weighted by (1-52); this last q is given unit weight. This weighting means that the energy of the most
recent p length section of the filtered input is given considerably more weight than the energies of previous
sections. This is not surprising, since the most recent coherent summation embodied in the comb filtering
operation has made use of practically the same information as the previous summations, except for the last
p-length section. Thus, the contribution of the individual previous coherent summations is de-emphasized
relative to the last. However, the contribution of the sum of these previous terms is not negligible for k on
the order of (1-p?)”! and larger. This incoherent processing can make an important contribution to the value

of q.

The discussion of this section can no »# be summarized in a block diagram of cthe proposed receiver for
nearly periodic signals. This block diagram is shown in Fig.2. In the following sections, a discussion of the
implementation of each block is given.

2. Details of Structure

The noise pre-einphasis filter structure depends upon the noise covariance matrix, which we have assumed
is not known to the designer. We have proposed to estimate this matrix from the input data. The difficulty is
that this matrix must be inverted to design the filter. This inversion is made relatively simple by the assumption
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Z,‘ —> -N'p > ( — > —i.—- —q
INPUT NOISE SIGNAL coms ENERGY DETECT WEIGHTED DISPLAY q
PRE-EMPHASIS  PRE-EMPHASIS  FILTER AND DUMP ENERGY AS A FUNCTION
FILTER FILTER EVERY p SAMPLES SUM OF p

Fig.2 Block diagram of the nearly periodic signal dotector and estimator. One such detector is required for
each period p.

that the noise is nearly uncorrelated over a whole period of the nearly periodic signal. For stationary noise,
this means that the noise covariance matrix is of the form

'Np - Thp [+ E) (Iv-10)

wherc 1 is the noise variance, I is the identity matrix, and E is a matrix whose off-diagonal entries are
much lcsspthan one, and whose diagonal entries are zero. The quantity of interest is the inverse of this matrix,
which can be approximated by the first two terms of the binomial expansion for matrices

-1 E)w =K

A |
,Np '7Np (-«
(rv-11)

The variance ~ f, and the coefficients of the E matrix can be estimated, for example, from the data by sub-
tracting the est I‘Rﬂle of the desired signal from the input and averaging the products of the remaining data at
appropriate time delays.

The signal pre-emphasis filter G is uniquely determined from the nearly periodic signal covariance matrix

in the manner indicated by Eq. (IV-8). It is necessary either to know this matrix, or to ¢stimate it. For
a)ﬂzr;,e number of possible 4y, the parallel receiver method is impractical. There seems to be no alternative
to having as much knowledge o? as possible available to the designer. Simply stated, this means the

strengths and cross mrro.!.xlmns n the harmonics of the nearly periodic signal must be known.

It should be noted that both the noise pre-emphasis filter and the signal pre-emphasis {ilter are time
varying. These filters must be realized by an operation equivalent to multiplying the samples of each individual
period of the input by a square matrix, and taking the result as the samples of the corresponding periodol the
outpu'. Furthermore, the noise pre-emphasis filter is unrealizable in the classical sense because the ¢
matrix is not triangular. The time variant and unrealizable features of these filters prevent their easy imple-
mentation by analog networks. However, the matrix multiplications can be easily performed by a computer,
with speed as the main limitation,

The comb filter, or weighted circulating adder, is the heart of the processor. The circulating adder is
casy to implement, especially with a computer. The only parameters of this filter are p and 5. The param-
cter p is to be handled by the estimation method, and hence need not be known, since ail values of interest
can be tried using parallel receivers. The parameter - must either be known, or estimated in th. same

manner as p. The estimation of these parameters is discussed further below.

The cnergy detection and weighted energy sum portions of the processor are fairly straightforward. The
energy detector simply computes the energy q, in each period of the comb filter output, and outputs this in-
formation every period. The weighted sum q lis then found by adding all the q; weighted by 1-a2, except the
most recent, which is weighted by unity. This raises the question of how many q; should be added. This
question has not arisen before because it is inherent in the formulation of the prnblem that the nearly periodic
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signal is either present or absent with fixed period for the whole experiment, so the qy can be added indefi-
nitely. If this is not true, the q; can be added only as long as the nearly periodic signal {8 present with a

fixed period, otherwise the performance is degraded. It seems that this decision must be made by the designer.
It may even be advantageous to leave out the weighted energy sum altogether, substituting eye integration in
connection with an appropriate display.

3. Parameter Estimates

As indicated at the beginning of Section III, the estimation problem is automatically solved as a by-product
of the detection problem. The period p is to be estimated as part of che detection problem, in the manner
described below in 8ection IV-A-3. The parameter , can be estimated also, but need not actually be displayed.
The receiver can compute the likelihood function for several values of 5, and always choose to display the out-
put which gives the largest value of q.

Since it 18 impossible to compute the likelihood ratio for every value of p and o, it is of interest to know
how far apart p and o can be sampled without missing a peak In the likelihood ratio. In Appendix C it is
shown that the period p should be sampled at intervals not greater than

e
bp= ;ﬁ:ﬂ In (= (IV-12)

where hp .. 18 the number of the highest nonzero amplitude harmonic in the rearly periodic signal. Similarly,
it is ahown”{n Appendix C that the correlation coefficient , should be sampled at an interval not greater than

ap =o(l-p). (Iv-13)

The remaining estimate of intcrest is the waveform of one period of the nearly periodic waveform. Since
this parameter is changing from one period to the next, no specl?l Smphaalsls placed on the estimation of this
parameter. Previous work on the estimation of periodic signals 30) indicates that a reasonable waveform
estimate can be obtained at the output of the comb filter if the pre-emphasis filters are removed.

No analysis of the goodness of the parameter estimates has been attempted here. Such an analysis is
extremely difficult because of the use of the estimated noise covariance in the pre-emphasis filter, and is
perhaps best ze& to a simulation. For an analysis of the estimation of periodic signals in noise, see Kincaid
and Scudder. 3

4. Display

The receiver output display would ideally be the value of q. In practice, a reasonable thing to do is to
display q as a function of p, to give the observer a feeling for the output when there is no nearly periodic
waveform present. This function should be displayed at successive time intervals to give a three-dimensional
display having time as one of the dimensions, the other two being q and p. The observer then has (in effect)
the conditional likelihood ratio as a function of p and time. From this he must estimate the period and make
a decision.

The observer would not consciously go through the mathematics required to make the decision. Instead,
he would look for peaks in the display which are significantly higher than the surrounding level. After some
experience, the operator is usually able to tell if these bumps are significant, which is presumably similar
to estimating the period, inserting the necessary a priori probabilities and costs, and making a decision.

B. Receiver Evaluation as a Detector

The theoretical evaluation of the receiver in terms of average cost is precluded by the fact that we cannot
specify prior probabilities and decision costs. A standard measure of performance is the Receiver Operating
Characteristics (ROC), described in Section I-E-1.

In our case, the output which we should test against a threshold to obtain ROC plots is the random variable
q given by Eq.(IV-2). Unfortunately, it is in general very difficult to get the probability distribution of q when
the signal is present. However, ROC curves can be obtained for a detector which computes just qy instead
of the sum q. This means that the detector does not perform the incoherent summing operation after filtering
and energy detecting. This detector is easier to evaluate because it eliminates the problem of handling the
sum of the highly dependent q; when the signal is present.
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In order to make an evaluation of the proposer receiver for a particular case, consider the following.
Assume the nearly periodic signal in each perlod 18 of the form

L

Xp(t) = Rez;' an exp(]am)exp\’jzﬂ(m/p)t] (Iv-14)

where the a,, are independent random variables with the same known variance ak, and p is assumed known.
The ~p, are uniformly distributed between -~ and n, and are independent of the a,,. The period p, the
periO(mo-perlod correlation o, and the number of components { are assumed known. In general terms,
Eq.(IV-14) is a model of a signal which is the sum of ¢ random harmonic "line" components, where the spectral
width of the lines is determined by o. Each harmonic is independent of the others, but they all have the same
average power. We assume the noise is white with known variance Lcﬁ.

Under these assumptions, it is shown in Appendix D that the random variable q‘rls chi-squared distributed
with 2t degrees of freedom, both when the signal is present and when it is absent. The expected value of q
is shown to be

2
-12_—";;' (l+1l_—4§,r> for a=1
(q) = (Iv-15)
%’-} for 4=0

where r = o2 :7'2, i.e., the input signal-to-noise ~atio. We could define the ratio of these two expectations as
the output signal-to-noise ratio

snr = 1 + -}_—;r e (rv-16)

By this definition the snr is independent of the number of harmonics ¢. However, the ROC curves for this
detector shown in Fig.3 reveal a strong depe..dence upon ¢{. The computation of these curves explained in
Appendix D. Note that the curves are dependent upon the product nr, where n is the number of periods at
which the signal correlation drops to 504, and r is the input signal-to-noise ratio. The quantities n and o
are related by

P =-2" . (IV-”)

The effect of increasing the number of dimensions is dramatically shown for the case nr=1. For a false alarm
rate of 10-2, the probability of detection increases from about 15% to over 90¢ as the number of harmonics
increases from 1 to 15.

Since the detector which computes q instead of would do even better, there is considerable reason for
optimism about the performance of the proposed detector. This optimism is tempered by several factors,
First of all, we are not likely to have equal strength independent harmonics; in fact we are not likely to be
certain a priori of the number, strength, and dependence of the harmonics. The detector design, specifically
the parameter 3y, must be based on some assumption about the signal structure. To an extent, practical
receivers might §g able to treat & as a random variable to be estimated, and try many different combinations
of harmonics. At any rate, a recéeer designed for a large number of harmonics will perform poorly when
trying to detect a signal with only one or two strong harmonics.
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Fig.3 ROC curves of the equal-strength independent harmonic detector with no
incoherent summing and a known period.
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APPENDIX A
We wish to evaluate the integral on the right of Eq. (I1I-5)
r
LZ|a,p) = [ TaXhy (2], (X)), 10X A1)

for 5 =1, Substituting Eq. (I1I-4) for the first term in the Integrand, and Eq. (ITI- 10) for the second term gives

’ k
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The strategy is to get the exponent into a sum of quadratic forms in the variables X;, plus a remainder term.
Then each quadratic form can be integrated as a Gaussian joint density function. By investigating the iteration
of this process, the portion of the exponent in the brackets can be shown to be equal to

k
- . _ P
) -ABy) AT (X-ABy) + Z{ AR Zi-cy (A3)
i=i

where

A}’

tNp + (1-00) 1%y,

Ip * (1+0%) (1=08) T ayp-o(1-007" 43 Ay o(1-02)! a5

>
t
]

-1 -1

A}
for 1l<ick, T (A4)
- - - -y = o
and Akl = QNlp + (1-02) 1’Xp p(1-02) l#xp Ag-, o(1-0?) ! *Xp Jl
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o
ey ]
-1 \ l . = -1 -1
R A xp A N
)=l
(A5)
4

| |
| -1 -1 - )
¢ {Z Tl hxp Ay N % |
|

(A6)

U

2 (-:n-oz)-

The parameters of most interest are the Ay, which are the covarjance matrices of the quadratic forms in X;j,
and the ¢; which determine the ultimate form of the detector.

Now carrying out the integration indicated in Eq. (A2) gives

. u/ . -nlk-1)/2 K
L@lo=1) = @)K a1 R g 1K P02 : TG
=1
1
exp - 3 \ Z ’l-qp Zi + i \ ¢y
{ i=t i=1
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APPENDIX B

Since the coefficiente Ay and ¢; in Eq.(Il-16) are too complex to be implemented easily, some simplifying
assumptions are n.cessary. We shall investigate the case of low signal-to-noise ratio, We dg‘lne low signal-
to-noise ratioto be the condition that the eigenvalues of the signal-to-noise ratio matrix ’Xp 'Np are less than
unity. Now we note that for low signal-to-noisc ratio

A,

1

-1 9 -1
[#p + (1-0%) ¥y,
- A 1 2y°1 -t 1
= [txp thp * P07 1) g (B1)
~ (1-5?) ’Xp c

Substituting this result into Eq. (B4) for A,, A,, etc., we find that in general

(1-p?) pr; i<k

Substituting this into Eq. (B6) for ¢; gives

/*i‘ i-) 4ot ) /)i‘ i-j ! ;
e 0 ’Np Zj I (1-0%) %pr>‘ 5 } 5Np Z]) 1<k
' \j=t / i=t
¢ > (B3)
T I S -
L& /. o] ’Np Z] QX‘K’_LJ o] QNp ZJ) H i=k.
j=l =1 /

Note that the last tevm in the sum of the c; is emphasized much more strongly than the other terms.
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APPENDIX C

The response of the weighted circulating adder to a unit impulse at time t = 0 {8

yit) ->~ o A(t-jp)

J=0
(c1)

—u, 0P ) aitekp)

j=-e
where p is the length of the waveforms to be added, and u_,(t) is the unit step function.

Ofort < 0

-u'(t):
lfort =0

The filter frequency response is the Fourier transform ofthe system response to a unit impulse applied at
time t = 0. Taking the Fourier transform of both sides of Eq. (C1) gives

1 .
Y({) = LY T VAT h}__‘ (1/p) 8(f-h/p)

O‘ l
= >~ u7p$fnl ;79 E+j§nﬂ-57p$

N=-o

c2)

where * denotes convolution here. This is the system function of a comb filter with "teeth™ having the form
of the functions on the right of Eq.(C2). The tecth are spaced 1/p apart. The tooth width, as measured be-
tween the 1/2 power points, is (1/mp) In (1/p).

In Section IV-A-3, it is argued that it is desirable to know how far apart values of p should be chosen so
that the comb filter would be sure to pass significant energy from a nearly periodic signal with period, say, p,.
Since varying the value of p makes the largest change in the center frequency tooth corresponding to the highest
harmonic hpa«, we need only concentrate on that tooth. We shall adopt the criterion that the increment 2p
should not move this tooth further than the distance between its half power points. This tooth is centered at

the frequency
h
{ = —DaX (o)

Therefore,

h
fepf = —maX (C5)

and

-~ —:)nza—x Ap for Ap << p . (ce)

Substituting the distance between the half-power points for Af into Eq.(C6)

pp = —— In (—1—> g cn

"hmax f
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We also want to know how far apart the values of o should be chosen 8o that the value of o which gives the
maximum processor output will not be missed. The main effect of changing r s to change the width of the
teeth of the comb filters, If the teeth are wider than the line width of the nearly periodic signal, too much
noise will get through. If the teeth are too narrow,only a portion of the signal will be passed by the comb teeth,
This latter effect tends to spread the signal energy over the comb filters for several different values of p. It
scems that a reasonable criterion is to require that the changes in o increment the comb tooth width by a
factor of two, so that the signal-to-noise ratio does not change by more than a factor of two. Therefore,

1 12 1 4
W In -0'—Ar: ¥ = In R (Ci)
Solving this equation for Ao gives
to = o(l-n) . (c9)
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APPENDIX D
We wish to find the probability density function of the random variable q given by Eq.(IV-3) when the
noise 18 white and the waveforms of the periods of the nearly periodic signal are of the form specified by Eq.
(Iv-14),

We note that Eq. (IV-10) can be written as follows:

Xp(t) = Re>d " an exp(jum) exp(j2n(m/pi]
(D1)
= >m a np €08 2ri(m/pk - ap 8in 2r(m/pk
where
Amr T 23,0080,
Ami =3k sinag
Then by the assumptions made on the 2 ; and q;, the following statistical averages can be computed
(e = @k = 4 @by = ok (D2)
(@mrne) = (3mi3p) =0; men (D3)
(apr2pi) = 0; all m,n . (D4)

Furthermore, the coefficients 2, and ap,j are Gaussian random variables since they ¢re lincar transfor-
mations of the time samples of the sample functions of a Gaussian process.

The equations (D1) through (D4) show that the set of functions {cos 2n (m/p}t; sin 2+(m/p}t]} is an (ortho-
normal) basis, with statistically independent coefficients, for the sample functions in each period of the nearly
periodic waveform. Note that the cosine or sine coefficients of the same order in different periods cannot be
independent because of the assumed period to period correlation o. Also, note that all the coefficients a .
and ap; have the same variance ok.

In this new coordinate system of harmonic cosines and sines, the covariance matrices N and pr are
diagonal. The ¥Np matrix is diagonal because white noise has independent coefficients in any basis,

QNp = 240&1 . (D5)
The QXp matrix is diagonal, and will be of the form
xp = 2¢ 0%l . (D6)

With the noise and covariance matrices given by Eqs. (D5) and (D6), the expression for q given by
Eq.(IV-3) becomes

y k - )
-j -2
@ = G%(iZ"JUNzi
=1

j
=1 j A

(D7)

1
T kS
Z

o]
Q
zy
(K

Lo ]

=

at

N

l—“/
~N

IR

I
T~
(5
<
—

—
L]
—-

where the zjj are the entries of the matrix Zi.
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Now, since q I8 the sum of squares of identically distributed, zero mean, Gwssian random variables, it is
chi squared distributed, with 20 degrees of freedom. Therefore, the only parameters neeued to completely
specify their distribution are ¢ and (y}). We note that since

(zyy,zify) = Byp of + 9"“‘-]" o% D8)

then
k kK X .
- Y i) » i
(y) = ok "N‘ jL ;‘ oKl b }2 (24,214
1=1 27!

(D9)
o

-4 £ (k-}) R el B Ijz‘h' 2
=n§(aN[Loz qﬁuaé_‘ ‘\_' ok Klz °X
J=i 1=t Jo=t '

We assume now that k is much larger than (1-p2)7!, i.e., k is sufficiently large that the correlation
between the first and the kth period is essentially zero. Then the following approximations are valid

wk-j) 1
-0

o (D10)

:T\/]w

—
1
-

1neiy

k 2
3 Z_‘ Dk'jl Dk-jz oljz'jxl h'l-lo"' (-lﬁ%r> x (D11)
1 o=t

i1

Substituting Egs. (D10, 11) into Eq. (D9)

#

N
P = 1= (1*—?%{5;-;*]'}:::75 (D12)

where r = cs( af{, the signal-to-noise ratio per dimension, which is the same as the over-all ratio.

The tables of the chi-squared distribution are given for cf; =180 Thus by dividing the variable gq; by a2,
the probabilities of detection and false alarm can be found. When the threshold is set at some level n, the
probabilities of detection is the probability that q /o] exceeds n/o} . The probability of false alarm is the
probability qk/cﬁ exceeds n/of. Since the tables give the probability that the variable exceeds chi squared
for various values of chi squared and ¢, the probabilities of detection and false alarm can be read directly.

On making up the ROC's, it is desirable to make the number of lines one of the parameters. It must be
remembered that each line consists of two dimensions. Furthermore, o as a parameter is hard to measure
directly. A more easily measured parameter is the number of periods n at which the correlation between
the first and the nth period drops to 1/2, i.e., where oM = 1/2. A further simplification results if we assume
n> 10, i.e., p > 0.933. in which case 1+p=2,
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